Markerless Multi-view Articulated Pose Estimation Using Adaptive Hierarchical Particle Swarm Optimisation
نویسندگان
چکیده
In this paper, we present a new adaptive approach to multi-view markerless articulated human body pose estimation from multi-view video sequences, using Particle Swarm Optimisation (PSO). We address the computational complexity of the recently developed hierarchical PSO (HPSO) approach, which successfully estimated a wide range of different motion with a fixed set of parameters, but incurred an unnecessary overhead in computational complexity. Our adaptive approach, called APSO, preserves the black-box property of the HPSO in that it requires no parameter value input from the user. Instead, it adaptively changes the value of the search parameters online, depending on the quality of the pose estimate in the preceding frame of the sequence. We experimentally compare our adaptive approach with HPSO on four different video sequences and show that the computational complexity can be reduced without sacrificing accuracy and without requiring any user input or prior knowledge about the estimated motion type.
منابع مشابه
Markerless Articulated Human Body Tracking from Multi-view Video with GPU-PSO
In this paper, we describe the GPU implementation of a markerless full-body articulated human motion tracking system from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multidimensional nonlinear optimisation problem solved using particle swarm optimisation (PSO). We model the human body pose with a skeleton-driven subdivisionsurface human body mode...
متن کاملMarkerless Human Motion Capture Using Hierarchical Particle Swarm Optimisation
In this paper, we address full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional nonlinear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algorithm which has gained popularity in recent years due to its ability to solve difficult nonlinear optimisation ...
متن کاملMarkerless human articulated tracking using hierarchical particle swarm optimisation
Please cite this article in press as: V. John et al., M (2010), doi:10.1016/j.imavis.2010.03.008 In this paper, we address markerless full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional non-linear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algori...
متن کاملArticulated Human Motion Tracking with HPSO
In this paper, we address full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional nonlinear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algorithm which has gained popularity in recent years due to its ability to solve difficult nonlinear optimisation ...
متن کاملMulti-View Human Body Pose Estimation with CUDA-PSO
The authors formulate the body pose estimation as a multi-dimensional nonlinear optimization problem, suitable to be approximately solved by a meta-heuristic, specifically, the particle swarm optimization (PSO). Starting from multi-view video sequences acquired in a studio environment, a full skeletal configuration of the human body is retrieved. They use a generic subdivision-surface body mode...
متن کامل